Process Capability Analysis in Excel with UNISTAT
The UNISTAT statistics add-in extends Excel with Process Capability Analysis capabilities.
For further information visit UNISTAT User's Guide section 9.3.6. Process Capability Analysis.
Here we provide a sample output from the UNISTAT Excel statistics add-in for data analysis.
Process Capability Analysis
Process Data
Variables Selected: THICKNESS
Subsample selected by: ZONE = 1, 2, 3, 4
Number of Cases: 168
Number of Subgroups | 4 |
---|---|
Control Range | 6.0000 |
Original Process Data: | |
LSL | 460.0000 |
Target | 560.0000 |
USL | 660.0000 |
Mean | 563.0357 |
Overall Standard Deviation | 25.3847 |
Pooled Standard Deviation | 25.5069 |
Transformed Process Data: | |
LSL | 44.5338 |
Target | 49.5291 |
USL | 54.1107 |
Mean | 49.6607 |
Overall Standard Deviation | 1.2080 |
Pooled Standard Deviation | 1.2137 |
Data Transformation: Results
Lambda | 0.5192 |
---|
Box-Cox Transformation:
y = (y ^ Lambda – 1) / Lambda
y = (POWER(y, 0.519150639529349) – 1) / 0.519150639529349
Normality Tests
Smaller probabilities indicate non-normality.
Anderson-Darling Statistic | Probability | |
---|---|---|
Original Data | 0.2495 | 0.7427 |
Transformed Data | 0.2286 | 0.8080 |
Transformed Data
Original Data | Transformed Data | Group | |
---|---|---|---|
1 | 487.0000 | 45.9301 | 3 |
2 | 505.0000 | 46.8403 | 3 |
3 | 506.0000 | 46.8904 | 4 |
4 | 514.0000 | 47.2896 | 4 |
5 | 515.0000 | 47.3393 | 1 |
6 | 520.0000 | 47.5870 | 1 |
7 | 520.0000 | 47.5870 | 3 |
8 | 521.0000 | 47.6364 | 3 |
9 | 521.0000 | 47.6364 | 4 |
10 | 522.0000 | 47.6858 | 1 |
11 | 522.0000 | 47.6858 | 3 |
12 | 525.0000 | 47.8336 | 2 |
13 | 527.0000 | 47.9319 | 3 |
14 | 528.0000 | 47.9810 | 1 |
15 | 529.0000 | 48.0301 | 4 |
16 | 532.0000 | 48.1770 | 4 |
17 | 533.0000 | 48.2258 | 4 |
18 | 533.0000 | 48.2258 | 3 |
19 | 533.0000 | 48.2258 | 2 |
20 | 533.0000 | 48.2258 | 4 |
21 | 534.0000 | 48.2747 | 4 |
22 | 535.0000 | 48.3234 | 2 |
23 | 535.0000 | 48.3234 | 2 |
24 | 535.0000 | 48.3234 | 1 |
25 | 538.0000 | 48.4695 | 2 |
26 | 539.0000 | 48.5181 | 1 |
27 | 539.0000 | 48.5181 | 4 |
28 | 540.0000 | 48.5667 | 1 |
29 | 540.0000 | 48.5667 | 4 |
30 | 540.0000 | 48.5667 | 3 |
31 | 542.0000 | 48.6637 | 4 |
32 | 542.0000 | 48.6637 | 2 |
33 | 543.0000 | 48.7121 | 3 |
34 | 543.0000 | 48.7121 | 4 |
35 | 545.0000 | 48.8089 | 2 |
36 | 545.0000 | 48.8089 | 4 |
37 | 545.0000 | 48.8089 | 1 |
38 | 546.0000 | 48.8572 | 3 |
39 | 546.0000 | 48.8572 | 1 |
40 | 546.0000 | 48.8572 | 4 |
41 | 546.0000 | 48.8572 | 3 |
42 | 546.0000 | 48.8572 | 1 |
43 | 547.0000 | 48.9055 | 1 |
44 | 547.0000 | 48.9055 | 3 |
45 | 547.0000 | 48.9055 | 4 |
46 | 548.0000 | 48.9537 | 2 |
47 | 548.0000 | 48.9537 | 2 |
48 | 548.0000 | 48.9537 | 1 |
49 | 548.0000 | 48.9537 | 2 |
50 | 548.0000 | 48.9537 | 3 |
51 | 549.0000 | 49.0019 | 4 |
52 | 549.0000 | 49.0019 | 1 |
53 | 550.0000 | 49.0500 | 1 |
54 | 550.0000 | 49.0500 | 1 |
55 | 550.0000 | 49.0500 | 1 |
56 | 550.0000 | 49.0500 | 4 |
57 | 552.0000 | 49.1461 | 4 |
58 | 552.0000 | 49.1461 | 3 |
59 | 552.0000 | 49.1461 | 1 |
60 | 553.0000 | 49.1942 | 3 |
61 | 553.0000 | 49.1942 | 2 |
62 | 554.0000 | 49.2421 | 3 |
63 | 554.0000 | 49.2421 | 1 |
64 | 555.0000 | 49.2901 | 1 |
65 | 555.0000 | 49.2901 | 2 |
66 | 555.0000 | 49.2901 | 1 |
67 | 556.0000 | 49.3379 | 4 |
68 | 556.0000 | 49.3379 | 3 |
69 | 556.0000 | 49.3379 | 3 |
70 | 556.0000 | 49.3379 | 1 |
71 | 556.0000 | 49.3379 | 2 |
72 | 557.0000 | 49.3858 | 1 |
73 | 557.0000 | 49.3858 | 1 |
74 | 558.0000 | 49.4336 | 4 |
75 | 558.0000 | 49.4336 | 2 |
76 | 558.0000 | 49.4336 | 4 |
77 | 558.0000 | 49.4336 | 2 |
78 | 559.0000 | 49.4814 | 2 |
79 | 560.0000 | 49.5291 | 3 |
80 | 560.0000 | 49.5291 | 3 |
81 | 561.0000 | 49.5768 | 1 |
82 | 562.0000 | 49.6244 | 3 |
83 | 562.0000 | 49.6244 | 1 |
84 | 562.0000 | 49.6244 | 2 |
85 | 563.0000 | 49.6720 | 4 |
86 | 563.0000 | 49.6720 | 3 |
87 | 563.0000 | 49.6720 | 2 |
88 | 563.0000 | 49.6720 | 2 |
89 | 563.0000 | 49.6720 | 4 |
90 | 564.0000 | 49.7196 | 3 |
91 | 564.0000 | 49.7196 | 2 |
92 | 564.0000 | 49.7196 | 1 |
93 | 565.0000 | 49.7671 | 1 |
94 | 566.0000 | 49.8146 | 4 |
95 | 566.0000 | 49.8146 | 2 |
96 | 567.0000 | 49.8620 | 3 |
97 | 567.0000 | 49.8620 | 3 |
98 | 567.0000 | 49.8620 | 2 |
99 | 568.0000 | 49.9094 | 1 |
100 | 568.0000 | 49.9094 | 1 |
101 | 569.0000 | 49.9568 | 2 |
102 | 569.0000 | 49.9568 | 4 |
103 | 569.0000 | 49.9568 | 4 |
104 | 569.0000 | 49.9568 | 1 |
105 | 570.0000 | 50.0041 | 4 |
106 | 570.0000 | 50.0041 | 2 |
107 | 570.0000 | 50.0041 | 1 |
108 | 571.0000 | 50.0514 | 4 |
109 | 571.0000 | 50.0514 | 3 |
110 | 572.0000 | 50.0986 | 3 |
111 | 572.0000 | 50.0986 | 3 |
112 | 572.0000 | 50.0986 | 2 |
113 | 575.0000 | 50.2401 | 4 |
114 | 575.0000 | 50.2401 | 4 |
115 | 577.0000 | 50.3342 | 2 |
116 | 577.0000 | 50.3342 | 3 |
117 | 577.0000 | 50.3342 | 3 |
118 | 577.0000 | 50.3342 | 3 |
119 | 578.0000 | 50.3812 | 2 |
120 | 579.0000 | 50.4281 | 3 |
121 | 580.0000 | 50.4751 | 4 |
122 | 580.0000 | 50.4751 | 2 |
123 | 580.0000 | 50.4751 | 1 |
124 | 581.0000 | 50.5220 | 1 |
125 | 581.0000 | 50.5220 | 2 |
126 | 582.0000 | 50.5688 | 3 |
127 | 583.0000 | 50.6156 | 1 |
128 | 583.0000 | 50.6156 | 2 |
129 | 583.0000 | 50.6156 | 3 |
130 | 584.0000 | 50.6624 | 1 |
131 | 584.0000 | 50.6624 | 2 |
132 | 584.0000 | 50.6624 | 4 |
133 | 584.0000 | 50.6624 | 2 |
134 | 584.0000 | 50.6624 | 4 |
135 | 584.0000 | 50.6624 | 1 |
136 | 584.0000 | 50.6624 | 2 |
137 | 585.0000 | 50.7091 | 4 |
138 | 585.0000 | 50.7091 | 2 |
139 | 585.0000 | 50.7091 | 2 |
140 | 586.0000 | 50.7558 | 4 |
141 | 586.0000 | 50.7558 | 4 |
142 | 587.0000 | 50.8025 | 2 |
143 | 587.0000 | 50.8025 | 2 |
144 | 588.0000 | 50.8491 | 2 |
145 | 588.0000 | 50.8491 | 2 |
146 | 589.0000 | 50.8956 | 3 |
147 | 591.0000 | 50.9887 | 4 |
148 | 592.0000 | 51.0351 | 4 |
149 | 592.0000 | 51.0351 | 1 |
150 | 593.0000 | 51.0816 | 2 |
151 | 593.0000 | 51.0816 | 1 |
152 | 595.0000 | 51.1743 | 1 |
153 | 595.0000 | 51.1743 | 4 |
154 | 598.0000 | 51.3131 | 3 |
155 | 598.0000 | 51.3131 | 3 |
156 | 599.0000 | 51.3593 | 4 |
157 | 599.0000 | 51.3593 | 2 |
158 | 602.0000 | 51.4977 | 2 |
159 | 606.0000 | 51.6817 | 4 |
160 | 607.0000 | 51.7276 | 4 |
161 | 609.0000 | 51.8193 | 3 |
162 | 609.0000 | 51.8193 | 1 |
163 | 610.0000 | 51.8651 | 1 |
164 | 612.0000 | 51.9566 | 3 |
165 | 616.0000 | 52.1392 | 3 |
166 | 625.0000 | 52.5478 | 3 |
167 | 626.0000 | 52.5930 | 1 |
168 | 634.0000 | 52.9536 | 3 |
Performance: Parts Per Million
PPM < LSL | PPM > USL | PPM Total | |
---|---|---|---|
Observed | 0.0000 | 0.0000 | 0.0000 |
Overall | 10.9778 | 114.9291 | 125.9069 |
Pooled | 11.9928 | 122.9638 | 134.9566 |
Performance: Percent
% < LSL | % > USL | % Total | |
---|---|---|---|
Observed | 0.0000 | 0.0000 | 0.0000 |
Overall | 0.0011 | 0.0115 | 0.0126 |
Pooled | 0.0012 | 0.0123 | 0.0135 |
Capability Indices: Overall Standard Deviation
Value | Lower 95% | Upper 95% | |
---|---|---|---|
Cp | 1.3213 | 1.1796 | 1.4628 |
Cpl | 1.4147 | 1.2548 | 1.5745 |
Cpu | 1.2279 | 1.0869 | 1.3689 |
Bissell Cpk | 1.2279 | 1.0869 | 1.3689 |
ZSW Eq 6 Cpk | 1.2279 | 1.0947 | 1.3611 |
ZSW Eq 8 Cpk | 1.2279 | 1.0854 | 1.3704 |
Chan Cpm | 1.2567 | 1.1433 | 1.3686 |
Boyles Cpm | 1.2605 | 1.1467 | 1.3727 |
Modified Boyles Cpm | 1.3135 | 1.1766 | 1.4580 |
NIST Cpm | 1.3135 | 1.1731 | 1.4537 |
Cpmk | 1.2243 | 1.1461 | 1.3024 |
Cs | 1.4041 | ||
Cpm+ | 0.0066 | ||
Cjkp | 1.1609 |
Capability Indices: Pooled Standard Deviation
Value | Lower 95% | Upper 95% | |
---|---|---|---|
Cp | 1.3151 | 1.1728 | 1.4572 |
Cpl | 1.4080 | 1.2475 | 1.5685 |
Cpu | 1.2222 | 1.0806 | 1.3637 |
Bissell Cpk | 1.2222 | 1.0806 | 1.3637 |
Ccpk | 1.2583 |
Capability Indices: Nonparametric
Quantile Method: Simple Average
Interval Method: Normal Approximation
Value | Lower 95% | Upper 95% | |
---|---|---|---|
Median | 49.6482 | 49.3379 | 49.8620 |
0.5% Quantile | 45.9301 | * | 47.2896 |
99.5% Quantile | 52.9536 | 52.1392 | * |
Cnpk | 1.3501 |