A.2. Discrete Distributions
A.2.1. Poisson
Mean = µ
Variance = µ
Parameter:
µ: mean,
A.2.2. Bernoulli
Mean = p
Variance = p(1-p)
Parameter:
p: probability of success,
A.2.3. Binomial
Mean = Np
Variance = Np(1-p)
Parameters:
N: number of trials
p: probability of success,
A.2.4. Negative Binomial
Mean = M/p
Variance = M(1-p)/p2
Parameters:
M: number of successes
p: probability of success,
Alternative Notation
Mean = µ
Variance = µ+µ-Squared/k
Parameters:
µ: arithmetic mean
k: exponent
A.2.5. Geometric
Mean = 1/p
Variance = (1-p)/p2
Parameter:
p: probability of success,
A.2.6. Hypergeometric
X = 0,1, …, N if N ≤ M
X = 0,1, …, M if N > M
Mean = NM/O
Variance = N M/O (O-M)/O (O-N)/(O-1)
Parameters:
M: number of defects in sample
O: population size
N: sample size
A.2.7. Discrete Uniform
Mean = (M+N)/2
Variance = ((N-M+1)2-1)/12
Parameters:
M: lower bound
N: upper bound